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The adsorption of complex molecules on a solid surface may re-
sult in less than full coverage, even at zero temperature, due to
molecular adsorption frozen in disorder. For molecules occupying
more than one adsorption site, voids are formed in the layer of
adsorbed molecules. This raises a question about the degree of cov-
erage of the solid surface by the adsorbed molecules. Monte Carlo
computer simulations for different molecule shapes on a binary
AB crystal were done to determine the void concentration. The
fraction of “uncovered surface area,” βs, and the fraction of the
“excess uncovered surface,” βm, are defined and determined. βs is
found to be between 0.093 and 0.577 and βm is in the range of 0.093
and 0.155. These values depend on the molecular size and shape.
For a different surface, that of AB2 compound, βm is found to be
smaller. c© 2001 Academic Press
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INTRODUCTION

Knowing the surface coverage is important for electrode
reaction (1), catalysis (2), discussion of conduction in the
adsorbed layer (3), or diffusion (4, 5). The concentration
of adsorbed species is calculated usually under equilibrium
conditions using the Langmuir (6) or BET (6) equation,
assuming the adsorbed species to be noninteracting. Cal-
culations of the diffusion coefficient in the adsorbed layer
take repulsive and attractive interaction between the ad-
sorbed species into consideration (4, 5). Interaction can be
neglected for a dilute concentration of adsorbed species
and in the opposite extreme case for the motion of a dilute
void concentration. A complication arises when the species
adsorbed is a molecule and the surface contains (at least)
two different types of atoms A and B so that the orientation
of the adsorbed molecules follows the relative position of
the surface atoms A and B.

One would expect that the structure of molecules may
have an effect on the extent of coverage in an adsorp-
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tion process at low temperature under rapid cooling. To
examine the extent of voids that should exist in the cov-
erage, we consider the simple situation of noninteracting
and nonoverlapping molecules, adsorbed on a crystalline
surface at low T, so that diffusion on the surface can be
neglected. Furthermore, if the molecule disintegrates and
each part forms new bonds with the surface, it is assumed
that their position does not change due to the low temper-
ature. Under these conditions the molecules are randomly
distributed and frozen in the position that they hit the sur-
face. One expects that the void concentration will increase
with the size and complexity of the adsorbed molecules. We
notice that the conditions of no overlap and no interaction
otherwise is equivalent to a strong, steep repulsion.

The analysis is a numerical one. We simulate the prob-
lem of covering a crystalline surface with molecules by the
problem of a structured area covered by certain structured
objects. The objects are randomly distributed. One type of
object is used for each computer experiment. The struc-
tured area, denoted as a “surface,” to be discussed first,
is a square, composed of m×m square elements, denoted
as “sites”, of two types, similar to a chessboard. The two
types of “sites” simulate two types of atoms or ions on a
surface of similar symmetry in binary AB materials. In this
work we limit the size of the objects simulating the adsorbed
molecules, to two or three segments covering two or three
sites representatively (see Fig. 1). We denote the part of
the molecule adsorbed on a single site as a “segment”. As
mentioned before the segments cannot diffuse on the sur-
face at low temperatures. A segment can be a single atom
or a group of atoms, e.g., the OH− group. Due to disorder,
the coverage is not full and voids exist. When the object
considered is a small bar, as shown in Fig. 1a, which cov-
ers two adjacent square sites of the area, the problem is
similar to that of covering a chessboard with domino bars.
Each bar covers two squares, one black and one white with
a black segment covering a black site and a white segment
a neighboring white site. It is possible to cover in an or-
dered manner an 8 × 8 chessboard with 32 domino bars and
no voids. This number is, however, lower when the bars are
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MOLECULE A

FIG. 1. Figures of size two and size three. (a) Short bar; (b) short diag-
onal; (c) long bar; (d) “L” shape; (e) long diagonal; (f) “horse movement.”

placed randomly on the board. Under disorder each bar
still covers exactly one black and one nearest white site. The
purpose of this paper is to find the concentration of voids,
for different small object shapes, for the m × m board and
then for a more complex board that simulates the surface
of cubic stabilized ZrO2 and objects that simulate water
molecules.

Care should be taken when the void concentration is de-
fined. We define the uncovered surface coefficient βs,

βs = k

m×m
, [1]

where k is the number of empty squares (voids) and m × m
is the total number of square elements in the more general
m × m chessboard. Thus, βs counts all uncovered elements
and gives the fraction of the uncovered area. However, for
most objects the board cannot be completely covered, even
under complete order, i.e., βs > 0. This can happen, for in-
stance, with the diagonal black object in Fig. 1b and for all
four objects in Fig. 1c–1f with size three. We therefore define
also the excess uncovered surface coefficient βm, the frac-
tion of elements that were not covered though they would
be covered if the objects were orderly placed on the surface.
βm is thus

βm = k− α ·m×m

m×m− α ·m×m
, [2]

where α (0≤α≤ 1) is the fraction of the sites in the m×m
board, which should not be covered anyway by that object
in an ordered layer. As an example we consider the objects

of Fig. 1e. If they fully cover all black elements, all white
ones stay uncovered and α= 1

2 . The relation between βm
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and βs is

βm = βs − α
1− α . [3]

(1−βm) can be identified as θ , the fraction of coverage.

COMPUTER SIMULATION FOR THE BINARY SITE
m×m BOARD AND RESULTS

The values of m we examine are 50 and 100. Periodic con-
ditions are assumed. All six patterns of the objects shown in
Fig. 1 are examined. The computer places one type of object
randomly on the surface. Steady state, i.e., maximum cov-
erage (but not necessarily full coverage), is reached when
the computer fails to place another object in more than a
certain number of trials, predetermined by the user, in be-
tween 103 and 106. The program then calculates the average
number of voids, from which βs is determined using Eq. [1].
βm is calculated from βs using Eq. [3]. The program also
sorts the clusters of voids by length and counts the number
of cluster of each length.

The results of the computerized simulation are summa-
rized in Table 1. For example, for objects in the shape of
a short diagonal (Fig. 1b) that is adsorbed on a 100× 100
board, the excess uncovered surface coefficient βm is 0.094
and the uncovered surface coefficient βs is 0.547. For small
objects, of two or three elements, the values of βm are in
the range 0.093 < βm < 0.155 and for βs they are 0.093 <
βs< 0.577. Both void coefficients do not change much with
m (for m= 50 and 100) and when trying to place the ob-
ject more then m2 times. It should be noticed that α was
calculated in the limit of large m (or periodic boundary
conditions) so that boundary effects on α are negligible.

Figure 2 shows the result of one run of random covering
of a 100 × 100 board by “long bar” objects of Fig. 1c until
steady state has been reached. Figure 3 shows statistics of
void cluster size (x) for this case averaged over 100 runs.
The size distribution is defined and calculated as follows:
(1) for each diagonal the statistics of the one-dimensional
void clusters on the diagonal line is made; (2) the result is
added to that obtained for all other parallel diagonals; (3)
the same statistics are done on the diagonals perpendicular
to the previous one; (4) the result is added to the former re-
sults; (5) an average of over a hundred runs is made. The end
result is termed “one-dimensional cluster size distribution”
n(x). The void clusters are composed of white and black
sites. Obviously, since αad= 1

4 the main contribution to the
voids comes from white sites. The average cluster size is

〈x〉 =
∑

x x · n(x)∑
x n(x)

. [4]

〈x〉= 1.636. The number n(x) of clusters of size x is fitted by
n(x) ≈ A ·m2 · e− x
l , [5]
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TABLE 1

The Uncovered Surface Coefficient βs and the Excess Uncovered Surface Coefficient βm for m×m Boards
with m= 50 and m= 100, Different Covering Objects, and Different Number of Experiments

m = 50b m = 100c

Number of trials Number of trials
Object shape

in Fig. 1 Fig. 1 α∞a 103 104 105 106 103 104 105 106

Short bar (a) 0 βs 0.11 0.094 0.094 0.093 0.119 0.095 0.093 0.093
βm 0.11 0.094 0.094 0.093 0.119 0.095 0.093 0.093

Short diagonal (b) 1
2 βs 0.550 0.547 0.546 0.546 0.552 0.547 0.547 0.547

βm 0.10 0.094 0.092 0.092 0.104 0.094 0.094 0.094
Long bar (c) 1

4 βs 0.352 0.344 0.343 0.343 0.356 0.345 0.344 0.344
βm 0.136 0.125 0.124 0.124 0.141 0.126 0.125 0.125

“L” shape (d) 1
4 βs 0.347 0.333 0.333 0.333 0.351 0.334 0.332 0.332

βm 0.129 0.111 0.111 0.111 0.134 0.112 0.109 0.109
Diagonal bar (e) 1

2 βs 0.581 0.577 0.577 0.577 0.584 0.577 0.577 0.577
βm 0.162 0.154 0.154 0.154 0.168 0.154 0.154 0.154

“Horse movement” (f) 1
4 βs 0.36 0.339 0.338 0.336 0.364 0.339 0.338 0.338

βm 0.15 0.118 0.117 0.114 0.152 0.118 0.117 0.117

aα∞ = α calculated in the limit of large m.

b Error: ±0.007.

c Error: ±0.003.

where l is a characteristic void length and A is a coefficient.
The fitting shown in Fig. 3 yields (for m= 100), A= 0.3613
and l= 1.0549.

Summing over all x values should yield the total num-
ber of voids, k, from which βs is calculated using Eq. [1].
Approximating the summation by an integration using the
. 100× 100 board covered by long bars of Fig. 1c. Covered area
lack and white squares are noncovered sites.
analytic approximation of Eq. [5] yields

k ≈
∞∫

0

x · n(x) dx = A ·m2 [6]

andβs≈ A. Indeed, from Table 1 for m= 100 and the object
of Fig. 1c βs= 0.344 close to A= 0.3613.

VOID SIMULATION FOR H2O ADSORPTION
ON THE (1, 0, 0) SURFACE OF CUBIC ZrO2

We examine now the (1, 0, 0) surface of cubic ZrO2 shown
in Fig. 4. This surface has a different structure than an
m×m chessboard because of Zr:O = 1 : 2 ratio of ions.

FIG. 3. The void length distribution of long bars Fig. 1c. x, Length
of void cluster (as defined in text); n(x), number of clusters of length

x. The triangles are numerical values. The line is a best fit, n(x)=
0.3613 e−

x
1.0549 ·m2, for m= 100, with R2= 0.9982.
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FIG. 4. Surface of cubic ZrO2. Zr, zirconium site; O, oxygen site.

In chemisorption of water the molecule H2O disintegrates
into H on the oxygen site and OH on the zirconium site
(7). The molecule is therefore simulated by an object with
two segments in line, one black and one white as in Fig. 1a.
The numerical calculation yields βm= 0.003 and βs= 0.335
(α= 0.3333). This result shows that disorder cannot affect
significantly the coverage of ZrO2 by H2O. βm is signifi-
cantly less than the one calculated for the AB binary, m×m
surface where βm reaches at least 0.155. The reason for the
lowβm is the presence of two oxygen sites per zirconium site
and the fact that only one oxygen site has to be covered.
This reduces considerably the constrain on the “proton”
positioning for each OH group adsorbed on a nearby Zr.

Experimentally, at low T, there will be also one or more
physisorbed water layers on top of the chemisorbed one
(3). This however will not affect the concentration of void
in the quenched chemisorbed layer.

CONCLUSIONS AND SUMMARY

We have related adsorption of nonoverlapping molecules
on a crystal surface at low temperature, neglecting interac-
tion between the molecules, to random placing of structured
objects on a structured board. We have first simulated the
adsorption of small molecules of two or three segments,
on the surface of a diatomic AB crystal. Placing randomly
these objects onto an m×m board not allowing overlap
yields voids. We define the uncovered surface coefficient,
βs, and the excess uncovered surface coefficient, βm. The
uncovered surface can reach up to 57% of the surface area
and the excess uncovered surface can reach up to 15.5%
out of the theoretically maximum number of sites that can
be covered in an ordered manner. The void coefficients βs

and βm depend on the size and shape of the objects used for
covering. The relation between the uncovered surface void
coefficient βs and the excess uncovered surface coefficient
βm is given in Eq. [3].
The reason for the large deviation of βs from unity is that
each object of three segments covers two black sites and
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one white site, and many white sites remain uncovered. E.g.,
in the diagonal case of Fig. 1b the object covers only two
black sites and all white sites remain uncovered. Disorder
introduces an excess concentration of voids of the order of
a few percent.

The minimum number of placing trials, which gives a
good estimation for βs and βm, i.e., required for reaching a
steady state, is found to be the number of sites on the board,
i.e., m×m.

The numerical analysis of the size distribution of the size
of void clusters for the object of Fig. 1c follows a Poisson
distribution.

We suggest that the analysis is relevant to molecules ad-
sorbed at low T (under quenching conditions) on surfaces
of crystalline solids. The numerical values obtained are ap-
plicable to diatomic solids, e.g., MO oxides. The adsorbed
objects are small molecules that disintegrated into two or
three segments on the surface. The latter is an important
point. For example, for water (H2O) molecules adsorbed
on an oxide it is an object of size two that is relevant. The
reason is that the water molecule chemisorbed on two ions,
the OH group onto a surface cation (M) and the remain-
ing proton on a nearby surface oxygen ion (O), forming
another OH group (7). For water molecules adsorbed on
the (1, 0, 0) surface of stabilized cubic ZrO2, βs= 0.335 and
βm= 0.003 (with α= 0.333). βm decreases when the surface
contains excess equivalent sites that need not all be covered
(as in the last example). For large molecules (polymers), the
void coefficients βs and βm can be calculated numerically
in a similar way. It is estimated that the void coefficients
will be larger due to the larger size of the polymers. Further
refinement would be to take into consideration interaction
between molecules that tend to reorient them, unless the
temperature is sufficiently low.
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